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A new first-order upwind scheme is presented and analysed. The scheme is simple to 
program and robust. The extension to a multi-dimensional FEM/FVM formulation is 
straightforward. The accuracy is demonstrated in two classical test cases. Results are obtained 
that do not contain unphysical oscillations even when FEM-type two-dimensional 
triangulations are used. 7‘ 1986 Academic Press, Inc. 

The work reported here is part of a joint INRIA-AMDBA program for FEM- 
type simulations [2]. Early in this program it appeared that a robust first-order 
scheme for nonstructured (2-D) triangulations of (3-D) tetraedrization applying 
efficient boundary conditions procedures and having favourable matrix properties 
was needed. 

First, a new flux-splitting upwind scheme has been designed. It has the following 
properties: 

(1) It is first-order accurate (with monotone-like behaviour) but not very dif- 
fusive. 

(2) Its assembling does not require a large computing time. 

(3) Boundary conditions at infinity are self-handled. 

(4) Its canonical linearization leads to a diagonally dominant matrix (in the 
scalar case), which can be trivially factored in lower-upper triangular matrices. 

The last three properties are the result of our choice of an upwinding instead of 
using a Riemann solver. 

The second feature of this paper is the fully multidimensional extension of the 
scheme to nonstructured triangulations. By nonstructured triangulations we mean 
FEM-type triangulations in which different nodes may have a different number of 
neighbors; this contrasts, for example, with a quadrangular FVM in which any 
given node always has four neighbors. The greater advantage of such triangulations 

’ Deceased. 

0021-9991/86 $3.00 
Copynghi 0 1986 by Academic Press, Inc 
All rights 01 reproduction in any form rererved 

416 



TRANSONIC FLOW SIMULATIONS 417 

has been proven for aircraft design by the wide utilization of AMDBA’s full poten- 
tial transonic codes for such complex geometries as a complete trireactor jet [6]. 

In the discretizaton method, a choice has to be made on the location of nodes in 
the triangulation: PI-type nodes, i.e., located at the vertices are chosen for the 
following reasons: 

(1) The number of necessary nodes is less than in the case where the nodes 
are located at the centers of the triangles; this has a crucial importance for 3-D 
extensions. 

(2) Nodes are located exactly on the boundary (in contrast with usual FVM 
approaches). 

(3) The discretization is compatible with Galerkin FEM approximations. As 
a result, the discretization matrix can be utilized in a preconditioning process of the 
(more accurate) Galerkin approximations. 

The resulting 2-D scheme is of FVM type for interior nodes and can be con- 
sidered as derived from a variational FEM principle for wall boundary conditions. 
The stability is studied for simplified problems. The application to a well-known 
transonic test case is presented, which demonstrates precisely the accuracy of the 
approximation. In the past, first-order monotone-type schemes have been construc- 
ted based on two main approaches: 

(i) Upwinding has been prompted by Courant-Isaacson-Rees [S], and 
extensively used by Moretti [lo] for nonconservative scheme and Steger-War- 
ming [16], Lerat [IS], and Van Leer [19] for conservative schemes. 

(ii) Riemann solvers, developed mainly by Godunov [7] have been used by 
Roe [ 141 and Osher [ 121. 

Several of the above authors have noted that Riemann Solvers could very well be 
approximated roughly without unduly deteriorating the accuracy. Although the 
scheme presented here could be interpreted as one that uses a (very) approximate 
Riemann Solver, it should be considered as a flux-splitting scheme, analogous to 
the Steger and Warming [ 161 scheme. 

In Section 1, a one-dimensional upstream-centered finite-difference scheme is 
derived from the characteristic form of the equations. Section 2 deals with the 
extension of the scheme to finite elements. A linear stability analysis is carried out 
in Section 3. The numerical experiments follow in Section 4. 

1. ONE-DIMENSIONAL UPSTREAM-CENTERED FINITE-DIFFERENCE SCHEME 

The Euler equations of gas dynamics in conservation form are written as 

w, + F( W), = 0, (1) 
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where 

W= (;+ F(W)= (L$--) (2) 

P = (7 - 1 He - tpu*), y = 1.4; (3) 

p is the density of the gas, ZJ is the velocity, e is the total energy per unit volume, p 
is the pressure, and y is the ratio of specific heats. 

The flux vector F is a homogeneous function of degree one, 

F( o! W) = aF( W), v’a E IQ, WE R3. (4) 

As a consequence of (4) we have 

F(W)=F’(W)W, v WE R3. (5) 

The Jacobian matrix ,4 = F(W) is diagonalisable and can be put in the form 

A(W)=T(W)A(W)T-‘(W). (6) 

Equation (1) has the nonconservative form 

w,+n(W) w,=o (7) 

and the characteristic form 

T-‘(W) w,+A(w) T-‘(W) w,=o. (8) 

The component equations of (8) are 

k=l 

;+qw,$J w,=o, lGjG3, 

where 

T-’ = (T,;‘), w= (wk), Lt(W)=diag{&(W)}. 

In (9), the components of W are differentiated along the same characteristic 
direction S. Equation (9) suggests to us that we use a centered approximation for 
T,;‘(W), s(W) and a one-sided differencing for the space derivative based on the 
sign of Ai. 

A semi-discrete explicit approximation of (1) to first-order accuracy is 

Wf’-W 
At 

+F(W’)r=O, (10) 
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where 

w = W(x, t”), At = t” + ’ - tn. 

Let xi, ieZ be the grid points with mesh width Ax. The approximate test 
functions are taken to be piecewise functions constant in the interval 
[xi- 1,2, xi+ 1,2] where x,+ ,,2 - x, + (AX/~). The Rayleigh-Ritz-Galerkin 
approximation consists to find W;+ I m the approximate test function space V,, 
such that 

s 

W”fl- W” 
h 

At 
h v,, dx + F( W;)., v,, dx = 0, vu, E v,. 

R 

Since the characteristic functions xi of the interval [xi- ,,*, xi+ 1,2] form a base 
for V,, Eq. (11) holds iff it is true for each xi. Taking vh = xi in (11) and using 
integration by parts for the second integral we arrive at the finite difference scheme 

(12) 

where 

WY= ~I[x,~,;2,x,+I:z]> (42, ,,z = F( WI’+ ,,A. 

As the function W;: is discontinuous at the points x:+ ,,2, (bF);+ ,,z cannot be 
defined in a unique way. It has to be defined as a function of WY and WY,, in a 
consistent manner: 

((Q6f-X+ ,,z = @F(W:, K+*), Gp( W, W) = F( W). 

By defining QF( W, m) = (F(W) + F( W))/2, Eq. (12) becomes a centered dif- 
ference scheme which is not stable. 

The upstream-centered conservative scheme suggested by (9) has the numerical 
flux 

where 

(T-‘W)y,,= f (TV’):+,!,;,,,:+,? m ( > 
’ 

k=l . j= I 

if ij( WY+ 1,2) > 0 
otherwise, 
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With the notation 

A=F=TAT-‘, A’ = T/i’T-‘, 

il*=diag{l$}, (A + )1+ l,z = A + ( WY+ ,,A 

A: = max(&, 0), i; = min(&, 0) 

the numerical flux (13) can be written in the form 

(@F-K+ i/2 = (A + I:+ 1/2 W: + (A ~ I:+ 1/2 WY+ 1. (14) 

This splitting is different from that of Steger and Warming [ 161 (see also 
Lerat [S] for a similar scheme), 

(@swK+ (l/2) = (A+): W;+(A-)r+, WY,,. (15) 

We shall see in Section 4 that the results obtained from these schemes show large 
variations. 

At the contrary, scheme (14) is similar to Van Leer’s Q-scheme (see [19]; Van 
Leer calls it Godunou’s scheme), 

(@vJI+ (l/2) = F(y’+2F’w’+1)=; [(A+);+,,,,,-(A );+C,,2J(W;+, - WY). (16) 

2. TWO-DIMENSIONAL SCHEME 

The inviscid gas dynamic equations in two dimensions and in conservation-law 
form are 

W,+F(W),+G(W),=O, 

p=(y-1) e-~~(r42+u2) , 
> 

y = 1.4. 

An explicit, first-order accurate time-discretization of (17) is 

(18) 

w+‘-w 
At 

+ F( W)x + G( Wn).” = 0. (19) 

Let sh be a triangulation of the computational domain Q consisting of triangular 
elements. A restructuring of the triangulation is done by constructing disjoint cells, 
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FIG. 1. Integration cell (a,). 

each cell containing exactly one node of the triangulation. This is accomplished by 
joining the centroids of the triangles having a node as a common vertex and the 
midpoints of the sides passing through that node (Figs. 1 and 2: the following 
notations are used: qi is the number of triangles around the node ai, K,, 1 < j < qi, 
triangles with ai as a common vertex, G,, centroid of the triangle cl+ a+ 1 < j,< q,, 
neighbouring nodes around u,, Zii, midpoint of the side aiuji, Cell(a,), region boun- 
ded by the segments G,,Z,, , I,, G,, ,..., Gly,Zly,, Zry,, G,,, and Ar(a,), area of the cell 
(4)). 

In Fig. 1 Cell(q) is shaded. 
The approximation test function space Vh consists of piecewise constant 

functions, constant in each cell. The approximation problem is to find W;+ ’ E V,, 
such that 

s w”+‘- W” 
h 

At h%dxdy+ s R (F(W;:).+G(W;:),“} v,dxdy=O, vu, E v,. (20) 
R 

As characteristic functions of the cells form a base for V,,. (20) holds iff the 

9 
Gil 

1 
‘ii 

x 

‘ij 

pij 
‘i(j+ll 

2 
’ ij 

%j 

FIG. 2. Segment through n,. 
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equation holds good for each characteristic function. Using Green’s formula, we 
have 

where 

Equation (21) reduces to 

WY+‘- w; 

At 
Ar(a,)+ 2 @>y=O, 

j=l 
(221 

vb., outward drawn unit normal to the segment G,I, with respect to the cell(a,), vi., 
outward unit normal to the segment lVGICi+ 1j with respect to the cell(a,), H;, one- 
dimensional first-order accurate numerical flux 

q,, = @/fy( WY, w;,. (23) 

3. LINEAR STABILITY ANALYSIS 

In one dimension, for the linear case, Godunov scheme takes the form 

(T-‘W)y+‘-(VW): 
At 

dx+n+(r-‘W)~+A-(T-lW);+, 

-n+(T-‘W)~~,-n-(-‘w)~=0. (24) 

Equation (24) corresponds to three scalar equations 

(T- ’ w);; ’ - (T- l W)Zi 

At 
d~+d;(T ‘̂W)~it-/Zk(T-‘W);(i+,) 

-n:(r-lw);(i_,)-n,(T-‘W)~j=O, l<k<3, 

where (T- ’ W)ii is the kth component of the vector (T- ’ W);. 
The scalar schemes (25) are stable and monotone if 

(25) 

(26) 
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For the two-dimensional linear case for uniform mesh Godunov Scheme (22) 
becomes 

v+l- W; 

At 
Ar(a.) + i H,; q + H.7 W; = 0 

j=l 
(27) 

the quantities Ar(a,), Hg being independent of i, the subscript i is replaced by dot. 
Equation (27) can be written as 

Only in the special case H,j = TA,jTpl stability and monotonic follows trivially 
under the CFL condition 

max l&l At <l 
Ar(a,)’ . (28) 

l<jC6 
l<k<4 

i,n 

An analogous condition has been obtained by Osher [ 1 I] in a constant by 
triangle FEM context. 

4. NUMERICAL EXPERIMENTS 

The above scheme is applied to the Euler equations. Similarity matrices can be 
found in [3]. 

Scheme (22) is applied first to shock tube problem proposed by Sod [ 151. A thin 
diaphragm separates two gases at different states which both are at rest at t = 0. 
When the diaphragm is burst an expansion wave travels into the region of low 
pressure and a shock wave followed by contact surface moves into the region of 
high pressure. The exact solution of this problem is known and can be found in 
Whitham [21]. 

FIG. 3. Boundary cell around the node a,. Segments I,,a, and ail, are solid wall segments. 
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The initial conditions are 

u=o, o=o, p= 1.0, p= 1.0 if x < 0.5 

u=o, u=o, p=O.l, p=o.125 if x>OS. 

A 101 x 3 mesh is used. Distributions of density, pressures, horizontal velocity 
and internal energy at time t = 0.1619 are presented in Fig. 4, with a CFL number 
of 0.9. 

1. 

i b 

0.5 

0. 

d, 

FIG. 4. The shock tube problem: 2-D scheme (density, pressure, velocity, temperature at time 0.165). 
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The results obtained are comparable with the 1-D results of G. Sod [lS] using a 
two-step version of Godunov’s scheme. They are nearly identical to the (2-D) 
results obtained with scheme (16), presented in Fig. 5 (The shock is slightly sharper 
in Fig. 4), while much more dissipation is observed with the 2-D version of scheme 
(15) (Fig. 6). 

The scheme is also applied to the problem B proposed at the GAMM 
Workshop [13]. A channel of length 5.0 and height 2.073 units contains a circular 
arc profile as a part of the bottom solid wall at a distance of 2.0 units from the inlet. 

1. 

0. 

a 

1. 

FIG. 5. The shock tube problem: 2-D version of Van Leer’s (first-order) scheme (16). 
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The thickness of the arc is equal to 4.2% of the chord. A 72 x 21 finite element 
triangulation which is comparable with the one proposed by GAMM is used. 

The initial condition is an incompressible perturbation of a uniform flow. Far 
field boundary conditions are specified as 

M, =0.85, pa = 1.0, u, = 1.0, u, =O.O. 

At solid walls tangential velocity condition is imposed as the boundary condition. 

a, 

FIG. 6. The shock tube problem: 2-D version of Steger and Warming’s and Warming’s (first-order) 
scheme (15). 
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Solid wall boundary integral is calculated as (see Fig. 3), 

r 0 1 

L 0 -l 

At the inlet and outlet far field boundary, conditions of uniform flow are forced 
after each time step; upstream values for inflow boundary (resp. downstream values 
for outflow boundary) are automatically selected by the upwind scheme [20]. 

Norm in I* of Ap/At is taken as a measure of residue. cpu time taken per iteration 
is 8.47 set in CII-HB DPS-68. It took 1000 iterations to arrive at a residue of the 
order 10e4. After 4500 iterations residue was steadily decreasing. The scheme con- 
verged to the steady state in 8900 iterations with a residue of the order 10p6. 

a 

FIG. 7. GAMM test problem with presented scheme: iso-Mach and isentropic lines 
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a 

0. 

FIG. 8. GAMM test problem with presented scheme: Mach and entropy deviation distributions at 
the bottom. 
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FIG. 9. GAMM test problem with the 2-D version of Van Leer’s scheme (16): iso-Mach and isen- 
tropic lines. 

Iso-Mach lines and isentropic lines are presented in Fig. 7, and the distributions 
of Mach and entropy deviation on the bottom solid wall are shown in Fig. 8. The 
shock is sharp with no point on it; there is a slight overshoot; entropy deviation 
ahead the shock is about 0.3 x 10e2. 

The results obtained are comparable with those of Borrel and Morice [4] and 
Lerat and Sides [9]. 

While the Q-scheme (16) did not show any striking difference for the shock tube 
test, it exhibits a different behaviour in the presence of a stationary shock as is 
observed in Figs. 9 and 10. Monotony is better preserved by scheme (16) but it is 
not always true that we prefer shocks with three transition zones. Furthermore, 
scheme (16) is more computer time consuming. 

Comparisons with Steger and Warming’s scheme (15) shows again, even with 
this refined mesh, a larger amount of viscosity for scheme ( 15), see Figs. 11 and 12. 
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0.050 

0. 

FIG. 10. GAMM test problem with the 2-D version of Van Leer’s scheme (16). Mach and entropy 
distributions at the bottom. 
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5. CONCLUDING REMARKS 

The numerical scheme presented in this paper is 

(i) efficient, in terms of computing time, 

(ii) simple to program, 
(iii) robust, 
(iv) at least as accurate as many other usual first-order schemes (it introduces 

relatively small amounts of artificial dissipation, and stationary shocks are quite 
sharp). 

The scheme can adequately be applied to the simulation of strongly shocked 
flows. Its good matrix properties allow it to be used in a preconditioning procedure 
of a second-order solver. Since the time this paper was submitted, this numerical 
scheme has also been applied to the calculation of the mixed internal-external flow 
past an inlet [2] and the simulation of some 3-D flows. This spatial approximation 

b 

FIG. 11. GAMM test problem with the 2-D version of steger and Warming’s scheme (IS): iso-Mach 
and isentropic lines. 
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0.050 

0. 

bl 

FIG. 12. GAMM test problem with the 2-D version of Steger and Warming’s scheme (15): Mach 
and entropy distributions at the bottom. 
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has been used also in conjunction with a new explicit time-stepping scheme [ 171, as 
a preconditioning procedure of a second-order implicit scheme [ 181. 
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